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Abstract

This paper develops a coordination game to study tax evasion across multiple tax havens. I extend

the global games framework—a class of coordination games with incomplete information—by intro-

ducing multiple tax havens in which investors coordinate. This allows for strategic interaction across

jurisdictions, capturing cross-haven coordination effects. I analyze how policies that raise the cost

of being a tax haven affect overall evasion. Targeting a single haven can backfire by concentrating

evaders elsewhere, increasing overall evasion. In contrast, uniform interventions across jurisdictions

are more effective. This mechanism helps explain the limited success of past international efforts

and highlights the value of a harmonized approach, as intended under the Global Minimum Tax.
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1 Introduction

Tax evasion has become a major concern in recent decades, as it undermines public revenues and ex-

acerbates inequality (OECD 2024). A key channel, particularly among top-income earners, is using

tax havens—jurisdictions that offer low tax rates and strong financial secrecy.1 Estimates suggest that

approximately 8% of global household financial wealth—equivalent to around 10% of world GDP—is

held in tax havens (Zucman 2013, 2014; Alstadsæter et al. 2018).2

Figure 1: Evolution of foreign-owned deposits in tax havens.

Notes: The figure shows the evolution of foreign-owned deposits in each BIS-reporting tax haven. The comparison is based

on the average deposits from the first semester of 2011 and 2007 (except for Cyprus, which began reporting in 2008:IV, and

Malaysia, which started in 2007:IV). The difference is expressed as a fraction of the total deposits held in all tax havens in

2007 (2.6 trillion dollars).

Source: Bank for International Settlements (2002–2011), restricted bilateral locational banking statistics (Johannesen and

Zucman 2014).

This has prompted supranational organizations such as the OECD and G20 to implement policies

to curb these practices. Major initiatives were launched in 2008–2009, which pressured tax havens to

sign a series of bilateral treaties of information exchange. However, overall evasion grew despite the

international efforts (Johannesen and Zucman 2014). Figure 1 shows the evolution of foreign-owned

before and after the implementation of the policies. While some jurisdictions experienced declines,

others saw increases. On net, deposits held in tax havens continued to grow. The authors find that

net deposits tend to decrease as more treaties are signed by each haven, suggesting that activity moved

1. A tax haven is a jurisdiction that attracts foreign wealth through a combination of low or zero tax rates and limited
cooperation in sharing information about foreign asset holders.

2. Zucman (2014) estimates $7.6 trillion in offshore wealth in 2013, corresponding to roughly $190 billion in annual tax
revenue losses. Other estimates are higher: Boston Consulting Group (2014) reports $8.9 trillion for the same year, while
Henry (2012) suggests the total could reach as much as $32 trillion.
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toward less compliant jurisdictions. This outcome reveals a tension between local improvements and

global effectiveness, driven by a strategic relocation across jurisdictions.3

This paper develops a game-theoretical model to study tax evasion across multiple tax havens, cap-

turing the strategic coordination effects that arise across them.4 The model builds on the concept of

global games, a class of coordination games with incomplete information.5 The global game structure

emphasizes how agents’ beliefs, shaped by expectations about others’ actions, determine equilibrium

outcomes. I then analyze how different policies that raise the cost of being a tax haven affect evader

behavior and overall levels of evasion.

The model is a two-stage sequential game with homogeneous investors who can choose to pay

taxes in a high-tax country or attempt to evade through one of two tax havens. Agents face incomplete

information about the number required to sustain each tax haven. The regime—whether a jurisdiction

remains a tax haven or not—depends on the number of evaders who choose to operate through it. In the

first stage, investors decide whether to specialize in one tax haven or the other. Specialization can be

interpreted as completing all necessary steps to transfer funds into the chosen jurisdiction. It involves no

direct cost, but choosing one haven implies losing the opportunity to move to the other. This decision is

based on a common public signal. In the second stage, investors receive an additional private signal and

choose whether to evade or comply. If enough investors choose to evade, the tax haven remains viable,

and evaders benefit relative to compliance. If not enough investors evade, the haven falls, and evaders

are reported to their home authorities, facing a punishment greater than if they had complied.

In a partial equilibrium setting, I analyze how different types of policies affect overall evasion.

Interventions are modeled as changes to the public signal, resembling economic sanctions that raise the

cost of sustaining a tax haven, thereby requiring more evaders. I then conduct a comparative statics

exercise to study the effects of targeting one or both havens.

The model captures the strategic interaction between tax havens, making policy outcomes dependent

not only on the absolute safety of a haven but also on its relative attractiveness. When one haven is

relatively more attractive, investors tend to concentrate there, increasing the likelihood of sustaining it.

However, when havens are similar, investors split more evenly, reducing the likelihood of sustaining

them. As a result, a policy targeting a single tax haven reduces evasion only if it affects the most

attractive one; otherwise, it may even increase it. In contrast, equal punishment to all havens always

reduces evasion. This mechanism helps explain the limited effectiveness of the OECD initiatives and

provides a rationale for more homogeneous policies, such as the Global Minimum Tax.

3. The coexistence of multiple tax havens with different levels of compliance has long been recognized as a challenge
for policy effectiveness. Hines Jr (2005) already estimated that two-thirds of U.S. multinational investment was located in
jurisdictions not classified as tax havens by the OECD’s 1998 report.

4. The idea of tax evasion as a coordination game is well established in the literature (Bucovetsky 2014; Konrad and Stolper
2016). By lowering its tax rate, a small country may lose little revenue from its domestic base while gaining from attracting
foreign taxable wealth. Therefore, the tax haven mechanism for evading is only available if a sufficient number of investors
choose to evade. For foundational models of tax competition, see the ZMW model (Zodrow and Mieszkowski 1986; Wilson
1986) and the KK model (Kanbur and Keen 1991), as summarized in Keen and Konrad (2013).

5. Global games were introduced by Carlsson and Van Damme (1993) which often leads to a unique, iterative dominant
equilibrium. See Morris and Shin (2001) for a complete explanation.
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This paper relates to at least two strands of literature. The first concerns tax evasion, specifically

the literature on tax havens. Most existing models do not treat investors’ decisions as a coordination

problem with endogenous beliefs. Elsayyad and Konrad (2012) analyze a sequential game in which the

OECD offers compensation or punishment to tax havens in exchange for ceasing their activities. They

find that offers should be made simultaneously rather than sequentially, as remaining tax havens become

stronger and more costly to deter. A similar result appears in Slemrod and Wilson (2009), which models

tax havens as juridical entrepreneurs selling protection from national taxation. The paper most closely

related to this one is Konrad and Stolper (2016), which presents a global game in which investors do

not know the fixed cost of a tax haven. While they extend the model to multiple havens, each is treated

independently, thereby ruling out coordination effects across tax havens.

The second is the global games literature, which has been used to model phenomena such as spec-

ulative attacks on currency pegs (Morris and Shin 1998), bank runs (Goldstein and Pauzner 2005), and

revolutions against governments (Angeletos et al. 2007). This model belongs to the class of regime

change global games, where payoffs change at a threshold rather than continuously. However, these

models have focused on a single entity—one currency, one bank, or one government. In my setting,

multiple global games happen simultaneously, and agents, at an ex-ante stage, choose which one they

participate in. The first stage captures the broader coordination problem across entities, while the second

stage captures the classic coordination problem within the entity.

The contribution of this paper lies in extending global games to a multi-entity setting, enabling the

analysis of coordination effects across entities and introducing a layer of strategic interaction that has

not been previously studied. This framework proves useful for understanding tax evasion through tax

havens. The model generates equilibrium outcomes that would not arise—or would be reversed—in

single-haven settings. This helps explain recent evidence on the limited effectiveness of past interna-

tional efforts and supports more harmonized approaches, such as the Global Minimum Tax.

This paper is structured as follows. Section 2 presents the theoretical model. In Section 3, I perform

a comparative statics exercise to analyze how different policies affect overall evasion. Section 4 extends

the analysis to a setting with heterogeneous agents. In Section 5, I discuss the policy implications. The

paper concludes with a summary of the results.

2 Model

The model is a two-stage sequential game. In the first stage, investors choose which of the two tax havens

to specialize in. In the second stage, they decide whether to evade through the haven they selected or

comply and pay taxes in their home country.

There is a continuum of homogeneous investors, indexed by i ∈ I , with total mass normalized

to one. Each investor owns one unit of mobile capital. The home country taxes this capital at a rate

t ∈ [0, 1], while both tax havens apply a rate p ∈ [0, 1], with p < t. The two tax havens are indexed by
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j ∈ {1, 2} and referred to as TH1 and TH2.6

There is incomplete information about the number of investors required to sustain each tax haven,

which is represented by θj . θj can be interpreted as the economic cost of being a tax haven due to, for

example, the loss of domestic revenue and international sanctions. Agents do not know the true value of

θj but have a common prior belief about it, which follows an independent normal distribution N(µj , σµ).

Tax havens differ in their µj , representing the public signal.

In the first stage, each investor chooses which tax haven to specialize in, enabling evasion through

it at a later point. This represents an “access stage”, capturing jurisdiction-specific requirements for

evasion, such as identifying legal loopholes, obtaining residence or citizenship, or setting up shell com-

panies. Once an investor specializes in a given haven, they cannot use the other. I assume that the cost

of specialization is negligible compared to the potential gains from evasion, so it is always profitable to

specialize in one of the tax havens before deciding whether to evade or not. Denote the specialization

decision of each agent as si = {1, 2}. The proportion of agents specialized in each tax haven is denoted

by Sj , s.t. S1 + S2 = 1.

By specializing in a specific tax haven, investors also gain additional information about the corre-

sponding θj . Each receives a private signal xij = θj + εi, where εi ∼ N(0, σx). They also observe

the proportion of agents specialized in their chosen haven. Using this information, each agent decides

whether to evade or comply and pay taxes in their home country. Let ai ∈ {Evade,Comply} denote the

decision of agent i. The share of agents who choose to evade in each tax haven is denoted by Aj , with

Aj ≤ Sj by construction.

If Aj ≥ θj , the tax haven country remains as a tax haven and taxes evaders according to p. However,

if Aj < θj , the tax haven’s regime changes and reports evaders to their home country, which punishes

evaders by expropriating all the capital. Thus, the payoff from compliance is 1 − t, while the payoff

from evasion is 1 − p if the haven survives, and 0 if it does not. The higher the value of θj , the more

agents are required to sustain the haven. As a result, agents’ incentives to evade decrease in both signals

and increase in the number of evaders. Their actions are therefore strategic complements.

I denote the information set of each agent by Iξ
i , where ξ ∈ {1, 2} indicates the stage of the

game. In the first stage, all agents have the same public information, so the information set is I1 =

{µ1, µ2, σµ, σx, p, t}. In the second stage, they accumulate information on the number of special-

ized agents and receive private signals, making the information set differ across agents: I2
i |si=k =

{xik, Sk, I1}. Figure 2 shows the structure of the game with the two stages and their different informa-

tion sets.

The policies implemented by international organizations, such as economic sanctions, increase the

cost of being a tax haven, raising the number of agents required to sustain it. This is captured by an

increase in θj . Although agents do not observe the exact value of θj , the impact of these policies is

6. The assumption of identical tax rates simplifies the analysis, allows the model to focus on the difference of public signals.
In practice, tax haven rates are all close to zero.
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reflected in the public signal µj . The following comparative statics exercise analyzes how changes in

the public signals (µ1, µ2) affect the number of evaders in each haven, (A1, A2).

I solve the model by Backward induction.

Figure 2: Structure of the game

Notes: The figure illustrates the sequential structure of the game. In the first stage, investors receive public information and

choose which tax haven to specialize in. In the second stage, they receive additional private information about their selected

haven and decide whether to evade taxes or comply. If the proportion of evaders Aj in a given haven is greater than or equal

to θj , the haven remains active and taxes evaders at rate p. Otherwise, it collapses and reports evaders to their home country,

where they are penalized. Investors who choose to comply are taxed at the standard rate t.

Source: Author’s elaboration.

2.1 Stage 2: evasion decision

The decision problem in the second stage takes the form of a global game. Consider the case of an agent

who has chosen THk.

If the agent chooses to comply, her payoff is 1 − t. If she chooses to evade, the payoff depends on

the aggregate behavior of others: it is 1 − p if the selected tax haven survives (Ak ≥ θk), and 0 if it

collapses (Ak < θk). Table 1 presents the corresponding payoff structure.
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TH1 Remains TH1 Falls

(Ak ≥ θk) (Ak < θk)

Evade 1− p 0

Comply 1− t 1− t

Table 1: Stage 2 payoff table ∀i : si = k.

Notes: This table presents the payoffs of an agent who has chosen to specialize in THk during the second stage.

Source: Author’s elaboration.

An investor finds optimal to evade if

(1− p) Pr(Ak ≥ θk) ≥ 1− t. (1)

Each agent forms a belief about the state of the world θk using the available signals. Since the risk of

being reported increases with the signals, it is strictly dominant to evade when they are sufficiently low.

According to this, suppose that they will adopt a switching strategy a(xik) based on a threshold value of

the private signal x̂k, s.t.

a(xik) =

Evade if xik ≤ x̂k

Comply if xik > x̂k.
(2)

Given a threshold value x̂k, the probability of evading corresponds to the proportion of investors

specialized in THk who decide to evade, that is,

Pr(xik ≤ x̂k|θ) = Φ

(
x̂k − θk

σx

)
=

Ak(θk)

Sk
(3)

where Φ is the cumulative distribution function (CDF) of the standard normal. Since Ak(θk) decreases

with θk, there exist a unique state of θk, say θ̂k, that is equal to Ak(θ̂k). Using this fact, THk will survive

if

θk ≤ θ̂k = Sk · Φ

(
x̂k − θ̂k

σx

)
(4)

which characterizes a fixed point.

Given the value of the signals, investors can update their beliefs about θk. By Bayesian updating,

the posterior belief about θk conditional on the signals is normal with mean (σ2
xµk + σ2

µxik)/(σ
2
x + σ2

µ)

and variance (σ2
xσ

2
µ)/(σ

2
x + σ2

µ). Then, considering Equation 4, the posterior probability of a tax haven

surviving is

Pr(θk ≤ θ̂k|I2
i |si=k) = Φ

 θ̂k −
σ2
xµk+σ2

µxik

σ2
x+σ2

µ√
σ2
xσ

2
µ

σ2
x+σ2

µ

 . (5)

Remember that the incentives to evade decrease as the private signal increases. When the private
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signal is exactly at the threshold x̂k, an agent, in equilibrium, should be indifferent between evading and

complying. Therefore, x̂k can be pinned down as the value of the private signal that satisfies

(1− p)Φ

 θ̂k −
σ2
xµk+σ2

µx̂k

σ2
x+σ2

µ√
σ2
xσ

2
µ

σ2
x+σ2

µ

 = 1− t. (6)

Using some algebra, the equilibrium threshold can be expressed as

x̂∗k = αθ̂k − βΦ−1

(
1− t

1− p

)
− (α− 1)µk (7)

where α =
σ2
x+σ2

µ

σ2
µ

and β = σx
σµ

√
σ2
x + σ2

µ.

A monotone equilibrium x̂∗k is thus identified by solving the system of equations formed by Equation

4 and Equation 7.

Proposition 1 A Bayesian NE for each tax haven regime change global game exists and is unique if and

only if σ2
µ > σx/

√
2π.

The proof is provided in Appendix A.

Given that the equilibrium is defined by fixed points, the model needs to be solved computationally.

However, we can state the relation between x̂∗k and some parameters.

Corollary 1 The equilibrium threshold x̂∗k satisfies the following properties:

• x̂∗k and θ̂k are complements.

• x̂∗k is increasing in Sk.

• x̂∗k is increasing in t but decreasing in p.

• x̂∗k is decreasing in µk.

The proof is provided in Appendix A. The equilibrium threshold x̂∗k determines investors’ incentives

to evade; a higher threshold increases the likelihood of evasion, as it expands the set of private signals

(xik) for which evasion is optimal. The first point reflects complementarity: a higher likelihood of

evasion requires a higher state θ̂k for the tax haven to undergo a regime change, and conversely, a higher

regime-change threshold encourages more evasion. The second point is intuitive: as more investors

specialize in a tax haven, the mass of potential evaders increases, thus raising the likelihood of evasion.

The third point captures comparative statics related to tax rates: a higher tax rate in the high-tax country

(t) makes evasion more attractive, while higher tax haven rates (p) reduce incentives to evade. Finally,

an increase in the public signal (µk) reduces the incentives to evade since it implies a higher expected

value of θk.
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2.2 Stage 1: specialization decision

In this stage, agents choose which tax haven to specialize in. The outcome is a specialization distribu-

tion (S∗
1 , S

∗
2) that is consistent with agents’ optimal responses, based on their inference about the second

stage. At the time of the decision, agents do not know the specialization proportions—which are deter-

mined endogenously—nor their private signals xij , which are revealed later. All agents share the same

information set I1 = {µ1, µ2, σµ, σx, p, t}. Then, the belief about θj conditional on the information set

is normally distributed with mean µj and variance σ2
µ, while for the signal xij is normally distributed

with mean µj and variance σ2
µ + σ2

x.

Denote the expected payoff of specializing in THj as Πj . An agent i will specialize in TH1 if

Πi1(x̂
∗
1, θ̂1|I1) ≥ Πi2(x̂

∗
2, θ̂2|I1). (8)

with

Πij(x̂
∗
j , θ̂j |I1) =(1− p) Pr(xij ≤ x̂∗j ∩ θj ≤ θ̂j |I1) + (1− t) Pr(xij > x̂∗j |I1). (9)

The specialization decision depends on the thresholds (x̂∗j , θ̂j), which determine the likelihood of suc-

cessfully evading. These thresholds are functions of the tax haven parameters, as defined in Equations

4 and 7. The only factors differentiating expected payoffs are agents’ beliefs about the specialization

proportions (S1, S2) and the public signals (µ1, µ2).

Lemma 1 The expected payoff of specializing in a THj (Πij) increases with the number of agents who

specialize in it (Sj) and decreases in its public signal (µj) if

(1−p)

√
σ2
x + σ2

µ
√
2πσµσx

e

(
− 1

2(1−ρ2)

) ∫ θ̂j(Sj ,µj)

−∞
e

(
− 1

2(1−ρ2)

(
−

2ρ(x̂j(Sj,µj)−µj)(θj−µj)

σµ
√

σ2
x+σ2

µ

+
(

θj−µj
σµ

)2))
dθj−(1−t) > 0

(10)

The proof is provided in Appendix A. The inequality formalizes a sufficient condition under which the

strategic complementarity of agents’ choices holds. As Sj increases, the thresholds x̂j and θ̂j also rise

making evasion more likely since there are more potential evaders (Corollary 1). This raises the expected

payoff by increasing the likelihood of successful evasion but simultaneously lowers it by reducing the

likelihood of compliance. Since these probabilities are not exact complements—one is based on the joint

distribution and the other on the marginals—the decrease in the first probability does not necessarily

match the decrease in the second. The overall effect of a change in the thresholds on the expected payoff

depends on the relative magnitude of the changes in the probabilities weighted by the tax rates. The

condition ensures that the evasion payoff dominates.

Conversely, an increase in µj lowers both thresholds, reducing the likelihood of evasion and thus the
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expected payoff.

With a continuum of agents, individual decisions have no impact on aggregate specialization pro-

portions. Therefore, an agent’s best response is only a function of the specialization distribution and the

public signals. Let βi(S1, S2, µ1, µ2) = si denote the best response of agent i.

In equilibrium, the specialization proportions must be consistent with these best responses. Follow-

ing the global games approach, assume that the strategy si is a switching rule that maps public signals

into specialization choices, i.e., si(µ1, µ2) ∈ {1, 2}.

Definition 1 A strategy profile {s∗i , a∗1, a∗2}i∈I constitutes a Perfect Bayesian Nash Equilibrium (PBNE)

of the two-stage game if:

• (Stage 2 optimality) For each agent i, given their information set I2
i , the evasion strategy aj(xij)

is a best response in the global game solved in Stage 2. That is, a∗j solves the regime change

problem with thresholds (x̂∗j , θ̂j).

• (Stage 1 optimality) For each agent i, given their information set I1 and the second-stage equi-

librium thresholds (x̂∗1, θ̂1, x̂
∗
2, θ̂2), the specialization strategy si is a best response, i.e.,:

s∗i (µ1, µ2) = βi(S
∗
1 , S

∗
2 , µ1, µ2) = arg max

j∈{1,2}
Πij(x̂

∗
j , θ̂j |I1)

with the equilibrium proportions satisfying:

S∗
j =

∫
I
1{s∗i (µ1, µ2) = j} di for j ∈ {1, 2}

Before introducing equilibrium strategies, it is useful to understand how public signals influence

best responses. Given Lemma 1, if µ1 is sufficiently low compared to µ2, the expected payoff from

specializing in TH1 dominates for all values of (S1, S2). This arises because changes in µj ∈ (−∞,∞)

can shift the threshold x̂∗j across the entire real line, while Sj ∈ [0, 1] has a much more limited influence

on expected payoffs. Conversely, if µ1 is sufficiently high, specialization in TH2 dominates.

Accordingly, the set of equilibria is determined by two threshold values, µ1(µ2) and µ1(µ2), such

that:

• If µ1 < µ1, specializing in TH1 strictly dominates for all (S1, S2), yielding a unique equilibrium

where all agents choose TH1 (S∗
1 = 1, S∗

2 = 0).

• If µ1 > µ1, specializing in TH2 strictly dominates for all (S1, S2), yielding a unique equilibrium

where all agents choose TH2 (S∗
1 = 0, S∗

2 = 1).

• If µ1 ∈ [µ1, µ1], the equilibrium outcome depends on (S1, S2), generating multiple equilibria. In

this case, there exists a unique threshold Ŝ1(µ1, µ2) ∈ [0, 1] that makes agents indifferent between

the two tax havens s.t.:
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– If S1 > Ŝ1, then Πi1 > Πi2, agents in TH2 deviate, and the equilibrium converges to

(S∗
1 = 1, S∗

2 = 0).

– If S1 < Ŝ1, then Πi1 < Πi2, agents in TH1 deviate, and the equilibrium becomes (S∗
1 =

0, S∗
2 = 1).

– If S1 = Ŝ1, then Πi1 = Πi2, agents have no incentives to deviate, and the equilibrium is

interior: (S∗
1 = Ŝ1, S

∗
2 = 1− Ŝ1).

When the difference between the public signals is small, full coordination in the tax haven with the

higher signal may still yield a higher expected payoff due to the strategic complementarity in special-

ization decisions. In other words, the mass of agents choosing the same haven can compensate for the

unfavorable public signal. The threshold Ŝ1(µ1, µ2) captures the precise share of agents required in

TH1 to make others indifferent between the two havens. This threshold is decreasing in µ1 − µ2: the

more favorable the public signal of TH1 relative to TH2, the fewer agents are needed in TH1 to sustain

indifference.

Among all strategies that can support the equilibria described above, we focus on three symmetric

switching strategies. The strategies are defined as follows:

• Strategy 1 (Full coordination) Agents specialize in the tax haven with the lower public signal.

In the event of a tie, they coordinate on one tax haven. Without loss of generality, assume ties are

broken in favor of TH1:

si(µ1, µ2) =

Specialize in TH1 if µ1 ≤ µ2

Specialize in TH2 if µ1 > µ2.
(11)

• Strategy 2 (Fair-Mixing) Agents specialize in the tax haven with the lower public signal, and

mix uniformly when the signals are equal:

si(µ1, µ2) =


Specialize in TH1 if µ1 < µ2

Specialize in TH2 if µ1 > µ2

Mix (0.5, 0.5) if µ1 = µ2.

(12)

The full coordination strategy ensures coordination on the more favorable tax haven but introduces a

discontinuous jump when public signals are equal. Finally, the hybrid strategy follows Strategy 1 when

signals differ, but switches to Strategy 2 when they are equal, avoiding arbitrary tie-breaking.

Proposition 2 If σ2
µ > σx/

√
2π and Lemma 1 holds, then Strategies 1 and 2 constitute Perfect Bayesian

Nash Equilibria.
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The proof is provided in Appendix A. The first condition, established in Proposition 1, ensures

that agents’ second-stage strategies are optimal given the equilibrium thresholds and that the solution

is unique. Lemma 1 ensures that expected payoffs are increasing in Sj and decreasing in µj , imply-

ing strategic complementarities and monotonicity in best responses. As a result, coordination emerges

endogenously, and each strategy leads to equilibrium specialization consistent with the public signals.

Proposition 3 Strategy 1 yields the equilibrium with the highest expected payoff for all agents; that is,

it constitutes the payoff-dominant equilibrium.

This result follows directly from Lemma 1 and the properties of Strategy 1. Since the expected

payoff increases with the number of agents specializing in a given tax haven and decreases with the

public signal, the highest payoff of the game is achieved when all agents coordinate on the tax haven

with the lower public signal. In the case of a tie, full coordination on either haven still dominates any

split. This is exactly what Strategy 1 prescribes. Hence, Strategy 1 attains the highest possible expected

payoff, and, being an equilibrium strategy, it constitutes the payoff-dominant equilibrium.

3 Evasion analysis

For given switching strategies, the total number of agents who choose to evade in equilibrium is

A∗ = A∗
1 +A∗

2 = S∗
1 Pr (xi1 ≤ x̂∗1|θ1) + S∗

2 Pr (xi2 ≤ x̂∗2|θ2) . (13)

Note that the realization of the private signals and the survival of the tax havens depend on the realiza-

tions of θ1 and θ2. As a result, A∗ changes in each realization of the game.

We can construct an approximation of A∗ by making a “first-stage” inference about the distribution

of xij , i.e., using the public signals:

A∗ ≈ Ã = S∗
1Φ

 x̂∗1 − µ1√
σ2
x + σ2

µ

+ S∗
2Φ

 x̂∗2 − µ2√
σ2
x + σ2

µ

 (14)

The higher σx and the lower σµ, the more accurate the approximation becomes, as the public signals

provide a better estimate of θj .

Comparative statics on Ã are conducted with respect to the public signals. An increase in only one

of the signals, say µ1, affects evasion through multiple channels: (i) it shifts the mean of the distribution

of xi1 to the right, making it less likely that agents fall below the evasion threshold—thereby reducing

evasion; (ii) it raises the evasion threshold x̂∗1 (as shown in Lemma 1), further decreasing the likelihood

of evasion in TH1; and (iii) depending on the specialization switching strategy, the increase in µ1

may reduce S∗
1 and increase S∗

2 , shifting more agents toward TH2. These changes feed back into the

thresholds: x̂∗1 decreases due to the lower S∗
1 , while x̂∗2 increases due to the higher S∗

2 . The net effect
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of this third channel is ambiguous. While evasion in TH1 becomes less attractive, the reallocation of

agents toward TH2 makes evasion there more appealing, potentially offsetting the initial reduction and

even increasing total evasion.

The aggregate effect can be seen formally in this

∂Ã

∂µ1
= S∗

1

ϕ1(·)√
σ2
x + σ2

µ

(
∂x̂∗1
∂S∗

1

∂S∗
1

∂µ1
− 1

)
︸ ︷︷ ︸

≤0

+S∗
2

ϕ2(·)√
σ2
x + σ2

µ

(
∂x̂∗2
∂S∗

2

∂S∗
2

∂S∗
1

∂S∗
1

∂µ1

)
︸ ︷︷ ︸

≥0

+
∂S∗

1

∂µ1
[Φ1(·)− Φ2(·)]︸ ︷︷ ︸
<0 if µ1<µ2
>0 if µ1>µ2
=0 if µ1=µ2

(15)

Here, Φj(·) and ϕj(·) denote the CDF and PDF corresponding to THj . The first term captures the direct

effect in TH1: a higher µ1 shifts the signal distribution (i) and raises the evasion threshold (ii), both

reducing evasion. The second term reflects the reallocation effect (iii)—as agents switch from TH1 to

TH2, S∗
2 increases, potentially lowering x̂∗2 and raising evasion. The third term captures a composition

effect: reallocating agents alters total evasion depending on which haven has the higher evasion rate.

When the change in µ1 does not affect the specialization decision—that is, ∂S∗
1

∂µ1
= 0—the expression

simplifies to:
∂Ã

∂µ1
= −S∗

1

ϕ1(·)√
σ2
x + σ2

µ

≤ 0 (16)

This confirms that, holding specialization fixed, increasing µ1 always reduces evasion through TH1.

Proposition 4 Given Strategy 1 and 2, when the public signal of one tax haven increases, the effect on

evasion depends on the relative signal levels:

(i) If the increase occurs in the more favorable haven (i.e., the one with the lower public signal),

evasion decreases under both strategies.

(ii) If the increase brings the public signals to equality (µ1 = µ2), Strategy 2—which prescribes

mixing—results in lower evasion than full coordination (Strategy 1).

(iii) If the signal increases beyond the point of equality, evasion rises under Strategy 2 due to a dis-

continuous shift in specialization, while it remains unchanged under Strategy 1.

(iv) If the increase occurs in the less favorable haven, it has no effect on evasion.

The proof is provided in Appendix A. When an increase in a public signal does not induce a shift in

the specialization distribution, it can only reduce evasion. The interesting dynamics arise under Strategy

2 when the signals become equal. Relative to full coordination (Strategy 1), splitting the population

across tax havens reduces evasion. However, due to the discontinuous nature of Strategy 2, a marginal

increase beyond the equality point causes all agents to switch to the previously less favorable haven.

This concentration effect reverses the earlier decline and leads to a sharp rise in evasion relative to the
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mixed case. By contrast, if the increase occurs in the haven with the higher public signal—one that no

agents were choosing—then both strategies still prescribe full specialization in the other haven, and the

increase has no effect on evasion.

Proposition 5 An equal increase in both public signals leads to a monotonic decrease in evasion under

both strategies.

This result follows from the fact that when both public signals increase simultaneously while main-

taining a constant difference (e.g., µ2 = µ1+ c), the specialization choices of agents remain unchanged.

Consequently, the third channel—feedback from switching in specialization—is neutralized. Evasion

decreases purely due to the direct effects: the shift in the distribution of private signals and the increase

in the evasion thresholds, both of which reduce the probability of evading taxes.

Figure 3 illustrates how changes in public signals affect equilibrium evasion outcomes under the

two specialization strategies, showcasing the results from Propositions 4 and 5. Panel (a) considers the

case where µ2 is fixed and µ1 increases (Proposition 4). Panel (b) shows the case where both µ1 and µ2

increase equally (Proposition 5).

(a) Increasing µ1 (b) Increasing µ1 and µ2

Figure 3: Comparative statics on evasion

Notes: The figure shows how equilibrium evasion levels vary under Strategies 1 and 2 for different values of the public

signals. Panel (a) analyzes the effect of increasing µ1 while holding µ2 fixed at 0.5. Panel (b) considers the case where both

public signals increase jointly such that µ2 = µ1 + 1.5. The results are computed under the following parameter values:

(p, t, σµ, σx) = (0, 0.5, 1, 1).

Source: Author’s elaboration.

4 Extension: investors with specialization bias

The main results rely on equilibrium switching strategies that generate sharp transitions in specialization,

with discontinuous shifts around signal thresholds. In this section, I explore a more flexible framework

that allows for smooth switching behavior by introducing individual biases toward one tax haven. While
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this extension does not yield a full equilibrium characterization, it provides useful insights into how

gradual transitions affect evasion outcomes.

A simple example of a strategy that allows for smooth transitions is given by

si(µ1, µ2, δi) =


Specialize in TH1 if µ1 − δi < µ2,

Mix (0.5, 0.5) if µ1 − δi = µ2,

Specialize in TH2 if µ1 − δi > µ2,

(17)

where δi ∼ N (0, σ2
δ ) represents an idiosyncratic bias toward TH1. By centering the distribution at zero,

agents are on average indifferent between the two tax havens. The symmetry of the normal distribution

ensures that half the population favors TH1, while the other half prefers TH2. The parameter σδ captures

the extent of heterogeneity: higher values lead to greater dispersion in preferences.

Figure 4 presents the comparative statics of the base model and this extension, using alternative

distributions of δ (σδ = 0.25 and σδ = 0.5). A key insight is that lower volatility in δ (i.e., smaller

σδ) leads to behavior that more closely mirrors the base model, as specialization shifts more abruptly

between tax havens.

(a) Increasing µ1 (b) Increasing µ1 and µ2

Figure 4: Comparative statics on evasion in extension

Notes: The figure illustrates how equilibrium evasion levels respond to changes in the public signals, comparing the base

model from the previous section with an extension under alternative distributions (σδ = 0.25 and σδ = 0.5). Panel (a)

examines the effect of increasing µ1 while holding µ2 fixed at 0.5. Panel (b) considers a joint increase in both signals such that

µ2 = µ1 + 1.5. Results are computed using the following parameters: (p, t, σµ, σx) = (0, 0.5, 1, 1).

Source: Author’s elaboration.

In the extended model, agents begin switching before the signals reach equality, which introduces

a smoothing effect that reduces evasion relative to the base model. This reduction occurs gradually,

reaching its lowest point precisely at equality—where, due to the symmetry of the distribution, half of

the agents specialize in each tax haven, replicating Strategy 2 in the base model.
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Interestingly, as the difference between µ1 and µ2 increases further, evasion continues to fall, reach-

ing a minimum, and then begins to rise again, eventually converging to the base model values. This

pattern suggests that, initially, the policy effect dominates—evasion lost in the taxed haven is not fully

compensated by gains in the alternative haven. However, once the gap in public signals becomes large

enough, the crowding-in effect takes over, and evasion begins to rise as more agents coordinate on the

better tax haven.

5 Policy Implications

The model reveals a central insight: when coordination problems arise across multiple tax havens, agents

respond not only to the absolute conditions of each jurisdiction but also to their relative attractiveness.

If one jurisdiction stands out as more secure, agents concentrate there, making coordination easier and

evasion more likely. When havens appear similar, agents are more uncertain about others’ choices,

coordination weakens, and aggregate evasion falls.

This has direct implications for policy design. A policy targeting a single tax haven reduces eva-

sion only if it undermines the most attractive one; otherwise, it may simply redirect evaders to other

jurisdictions, leaving overall evasion unchanged or even increased. By contrast, symmetric enforcemen-

tweakens coordination in all of them and reduces evasion.

This mechanism may help explain the limited effectiveness of past initiatives, such as those led by

the OECD. Uneven enforcement created relocation rather than deterrence. In this light, the Global Min-

imum Tax appears more promising, as long as it is implemented uniformly and with broad international

participation.

6 Conclusions

This paper studies tax evasion through the lens of a global game with multiple tax havens. By model-

ing evasion as a regime change problem occurring across several tax havens, it captures how investors

coordinate both within and across jurisdictions under incomplete information. The key innovation is

to allow for cross-haven strategic interactions, which are absent in single-entity models. I then analyze

how different types of policies that raise the cost of being a tax haven affect evasion outcomes.

Coordination is easier when tax havens differ in perceived safety, as investors tend to concentrate

on the most attractive one. This makes uneven enforcement potentially counterproductive, as it may

increase overall evasion by shifting it across jurisdictions. In contrast, applying pressure evenly reduces

coordination incentives in all havens and is more effective. This helps explain the limited success of the

OECD’s 2008–2009 initiatives and highlights the potential of the Global Minimum Tax, provided it is

implemented uniformly and with broad coverage.

As a direction for future research, the model could be extended to include more than two tax havens
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with differing tax rates, or to a general equilibrium setting where both the OECD and tax havens are

strategic players. Additionally, since individuals are assumed to be risk-neutral, the crowding-in effect

arises from differences in expected value rather than risk reduction. Extending the model to risk-averse

investors would offer new insights into how coordination effects operate under different preferences.

Finally, the framework could be applied to other coordination settings where individuals choose among

multiple entities—such as banks or currencies, as studied in other global game contexts. Ignoring cross-

entity interactions in these environments may miss important strategic interactions.
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Appendices

A Ommited proofs

A.1 Proof of Proposition 1

To proof existence and uniqueness I follow Angeletos et al. (2007) methodology.

Using the equilibrium Equation 4 and 7, we can create a function named U(θ̂k) s.t.:

U(θ̂k) = θ̂k − Sk · Φ

(α− 1)(θ̂k − µk)− βΦ−1
(

1−t
1−p

)
σx

 . (A1)

To proof the function is monotonic in θ̂k and hence, the FP exist and ! we need that

∂U(·)
∂θ̂k

= 1− Sk
1

σx
ϕ(·)(α− 1) > 0 (A2)

To proof this derivative is positive, consider the maximum values of ϕ(·) = 1/
√
2π and Sk = 1, then

∂U(·)
∂θ̂1

> 0 ⇒ 1− 1

σx

1√
2π

σ2
x

σ2
µ

> 0 ⇒ σ2
µ >

σx√
2π

(A3)

Therefore the last condition is both necessary and sufficient for U(·) to be monotonic on θ̂k, in which

case the monotone equilibrium is unique. Finally, to prove that this equilibrium is the only one surviving

iterated deletion of strictly dominated strategies, see Morris and Shin (2001). ■

A.2 Proof of Corollary 1

To proof the second point we need to use implicit differentiation in Equation A1 ,

∂θ̂k
∂x̂k

= −∂U/∂x̂k

∂U/∂θ̂k
=

Sk
ϕ(·)
σx

1− Skϕ1(·)α−1
σx

> 0 (A4)

The latter inequality comes from the condition for existence and uniqueness. Using Equation 7,

∂x̂∗k
∂θ̂k

= α > 0 (A5)

Regarding the second point, using implicit differentiation in Equation A1 ,

∂θ̂k
∂Sk

= −∂U/∂Sk

∂U/∂θ̂k
=

Φ(·)
1− Skϕ1(·)α−1

σx

> 0 (A6)
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The latter inequality comes from the condition for existence and uniqueness. Then, using Equation 7,

∂x̂∗k
∂Sk

= α · Φ(·)
1− Skϕ1(·)α−1

σx

> 0 (A7)

Regarding the different tax rates,

∂θ̂k
∂t

= − ∂U/∂t

∂U/∂θ̂k
= −

Sk
ϕ(·)
σx

β ∂Φ−1(·)
∂t

1− Skϕ1(·)α−1
σx

> 0 given that
∂Φ−1(·)

∂t
< 0, (A8)

then
∂x̂k
∂t

= α
∂θ̂k
∂t

− β
∂Φ−1(·)

∂t
> 0. (A9)

W.r.t. p

∂θ̂k
∂p

= − ∂U/∂p

∂U/∂θ̂k
= −

Sk
ϕ(·)
σx

β ∂Φ−1(·)
∂p

1− Skϕ1(·)α−1
σx

< 0 given that
∂Φ−1(·)

∂p
> 0, (A10)

then
∂x̂k
∂p

= α
∂θ̂k
∂p

− β
∂Φ−1(·)

∂p
< 0. (A11)

Finally, regarding µk,
∂θ̂k
∂µk

= −∂U/∂µk

∂U/∂θ̂k
= −

Skϕ(·)α−1
σx

1− Skϕ1(·)α−1
σx

< 0, (A12)

then
∂x̂k
∂µk

= α
∂θ̂k
∂µk

− (α− 1) = −α
Skϕ(·)α−1

σx

1− Skϕ(·)α−1
σx

− (α− 1) < 0. (A13)

■

A.3 Proof of Lemma 1

We need to show that ∂Πj(Sj |I1)/∂Sj > 0, i.e.,

∂

∂Sj
(1− p) Pr(xij ≤ x̂∗j (Sj), θj ≤ θ̂j(Sj)|I1) +

∂

∂Sj
(1− t) Pr(xij > x̂∗j (Sj)|I1) > 0 (A14)

Rewriting the probability term,

∂

∂Sj
(1− p) Pr(xij ≤ x̂∗j (Sj), θj ≤ θ̂j(Sj)|I1) +

∂

∂Sj
(1− t)

[
1− Pr(xij ≤ x̂∗j |I1)

]
> 0 (A15)

which simplifies further to:

(1− p)
∂

∂Sj
Pr(xij ≤ x̂∗j (Sj), θj ≤ θ̂j(Sj)|I1)− (1− t)

∂

∂Sj
Pr(xij ≤ x̂∗j (Sj)|I1) > 0 (A16)
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The joint distribution of xij and θj follows a bivariate normal distribution:

fxij ,θj (xij , θj) ∼ Bivariate Normal with µ =

µj

µj

 ,Σ =

σ2
x + σ2

µ σ2
µ

σ2
µ σ2

µ

 , ρ =
σµ√

σ2
x + σ2

µ

;

(A17)

The corresponding cumulative distribution function (CDF) w.r.t to the threshold x̂j and θ̂j is

Fxij ,θj (x̂j , θ̂j) =

∫ x̂j

−∞

∫ θ̂j

−∞

1

2πσµ
√
σ2
x + σ2

µ

√
1− ρ2

e
− z

2(1−ρ2)dθ1dxij

z =

 xij − µj√
σ2
x + σ2

µ

2

− 2ρ(xij − µj)(θj − µj)

σµ
√
σ2
x + σ2

µ

+

(
θj − µj

σµ

)2
(A18)

Applying Leibniz’s rule, the derivative of Pr(xij ≤ x̂∗j (Sj)|I1) is:

1√
2π(σ2

x + σ2
µ)

e
− 1

2

(
x̂∗j−µj√
σ2
x+σ2

µ

)2

∂x̂∗j
∂Sj

(A19)

Similarly, the derivative of Pr(xij ≤ x̂∗j (Sj), θj ≤ θ̂j(Sj)|I1)

∫ θ̂j

−∞
fxij ,θj (x̂j , θj)dθj

∂x̂∗j
∂Sj

+

∫ x̂j

−∞
fxij ,θj (xij , θ̂j)dxij

∂θ̂j
∂Sj

(A20)

Substituting the bivariate normal distribution, we obtain:

∫ θ̂j

−∞

1

2πσµ
√
σ2
x + σ2

µ

√
1− ρ2

e

− 1
2(1−ρ2)

( x̂j−µj√
σ2
x+σ2

µ

)2

−
2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2
dθj

∂x̂∗j
∂Sj

+

∫ x̂j

−∞

1

2πσµ
√

σ2
x + σ2

µ

√
1− ρ2

e

− 1
2(1−ρ2)

( xij−µj√
σ2
x+σ2

µ

)2

−
2ρ(xij−µj)(θ̂j−µj)

σµ

√
σ2
x+σ2

µ

+

(
θ̂j−µj

σµ

)2


dxij
∂θ̂j
∂Sj

(A21)
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Then, Equation A16 becomes

(1− p)

[ ∫ θ̂j

−∞

1

2πσµ
√
σ2
x + σ2

µ

√
1− ρ2

e

− 1
2(1−ρ2)

( x̂j−µj√
σ2
x+σ2

µ

)2

−
2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2
dθj

∂x̂∗j
∂Sj

+

∫ x̂j

−∞

1

2πσµ
√
σ2
x + σ2

µ

√
1− ρ2

e

− 1
2(1−ρ2)

( xij−µj√
σ2
x+σ2

µ

)2

−
2ρ(xij−µj)(θ̂j−µj)

σµ

√
σ2
x+σ2

µ

+

(
θ̂j−µj

σµ

)2


dxij
∂θ̂j
∂Sj

]

− (1− t)
1√

2π(σ2
x + σ2

µ)
e
− 1

2

(
x̂∗j−µj√
σ2
x+σ2

µ

)2

∂x̂∗j
∂Sj

> 0

(A22)

Considering x̂∗j ∝ αθ̂j , and eliminating common terms ( 1√
σ2
x+σ2µ

), we obtain:

(1− p)
1

2πσµ
√
1− ρ2

[
α

∫ θ̂j

−∞
e

− 1
2(1−ρ2)

( x̂j−µj√
σ2
x+σ2

µ

)2

−
2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2
dθj

+

∫ x̂j

−∞
e

− 1
2(1−ρ2)

( xij−µj√
σ2
x+σ2

µ

)2

−
2ρ(xij−µj)(θ̂j−µj)

σµ

√
σ2
x+σ2

µ

+

(
θ̂j−µj

σµ

)2


dxij

]

− (1− t)
1√
2π

αe
− 1

2

(
x̂∗j−µj√
σ2
x+σ2

µ

)2

> 0

(A23)

Substituting ρ and multiplying both sides by
√
2π, we get:

(1− p)

√
σ2
x + σ2

µ
√
2πσµσx

[
α

∫ θ̂j

−∞
e

− 1
2(1−ρ2)

( x̂j−µj√
σ2
x+σ2

µ

)2

−
2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2
dθj

+

∫ x̂j

−∞
e

− 1
2(1−ρ2)

( xij−µj√
σ2
x+σ2

µ

)2

−
2ρ(xij−µj)(θ̂j−µj)

σµ

√
σ2
x+σ2

µ

+

(
θ̂j−µj

σµ

)2


dxij

]

− (1− t)αe
− 1

2

(
x̂∗j−µj√
σ2
x+σ2

µ

)2

> 0

(A24)
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Using
√
α =

√
σ2
x+σ2

µ

σµ
, we rewrite:

(1− p)
1√

2π
√
ασx

[
α

∫ θ̂j

−∞
e

− 1
2(1−ρ2)

( x̂j−µj√
σ2
x+σ2

µ

)2

−
2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2
dθj

+

∫ x̂j

−∞
e

− 1
2(1−ρ2)

( xij−µj√
σ2
x+σ2

µ

)2

−
2ρ(xij−µj)(θ̂j−µj)

σµ

√
σ2
x+σ2

µ

+

(
θ̂j−µj

σµ

)2


dxij

]

− (1− t)e
− 1

2

(
x̂∗j−µj√
σ2
x+σ2

µ

)2

> 0

(A25)

Since all terms are positive, we simplify by disregarding the second integral, adopting a sufficient condi-

tion. The second integral “helps” in proving the statement. Extracting the leading exponent term further

refines the condition to:

(1− p)

√
σ2
x + σ2

µ
√
2πσµσx

e

(
− 1

2(1−ρ2)

) ∫ θ̂j

−∞
e

(
− 1

2(1−ρ2)

(
−

2ρ(x̂j−µj)(θj−µj)

σµ

√
σ2
x+σ2

µ

+
(

θj−µj
σµ

)2))
dθj

− (1− t) > 0

(A26)

Since the coefficient of (1 − p) is positive, the condition holds when the difference between p and t is

sufficiently large. For instance, setting t = 1 ensures the condition is met for all p > 0. ■

A.4 Proof of Proposition 2

To prove that these strategies constitute a Perfect Bayesian Nash Equilibrium (PBNE), we must ver-

ify two conditions: Stage 2 optimality and Stage 1 optimality. Stage 2 optimality has already been

established in Proposition 1. We now focus on Stage 1.

Since all strategies considered are symmetric, we analyze the case where all agents follow the same

strategy. Rather than expressing expected payoffs as functions of the thresholds—which themselves de-

pend on specialization proportions and public signals—it is more convenient to define expected payoffs

directly as a function of (S1, S2, µ1, µ2) : Πij(Sj , µj | I1) = Πij(x̂j(Sj , µj), θ̂j(Sj , µj) | I1).

Assume all agents follow Strategy 1, which prescribes specializing in the tax haven with the lower

public signal, with ties broken in favor of TH1. Then:

• If µ1 < µ2, all agents specialize in TH1, so (S1 = 1, S2 = 0). By Lemma 1, Πi1(1, µ1 | I1) >

Πi2(0, µ2 | I1), ∀i. No agent has an incentive to deviate and (S1 = 1, S2 = 0) is consistent.

• If µ1 = µ2, tie-breaking leads all agents to specialize in TH1, again yielding (S1 = 1, S2 = 0).

By Lemma 1, Πi1(1, µ1 | I1) > Πi2(0, µ1 | I1), ∀i. No agent has an incentive to deviate and

(S1 = 1, S2 = 0) is consistent.
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• If µ1 > µ2, all agents specialize in TH2, so (S1 = 0, S2 = 1). By Lemma 1, Πi1(0, µ1 | I1) <

Πi2(1, µ2 | I1), ∀i. No agent has an incentive to deviate and (S1 = 0, S2 = 1) is consistent.

Thus, Strategy 1 constitutes a Perfect Bayesian Nash Equilibrium.

Assume all agents follow Strategy 2, which prescribes specializing in the tax haven with the lower

public signal, and mixing uniformly when the signals are equal. Let σi(j) denote the probability of

agent i specializing in tax haven j.

• If µ1 < µ2, all agents specialize in TH1, so (S1 = 1, S2 = 0). By Lemma 1, Πi1(1, µ1 | I1) >

Πi2(0, µ2 | I1), ∀i. No agent has an incentive to deviate and (S1 = 1, S2 = 0) is consistent.

• If µ1 > µ2, all agents specialize in TH2, so (S1 = 0, S2 = 1). By Lemma 1, Πi1(0, µ1 | I1) <

Πi2(1, µ2 | I1), ∀i. No agent has an incentive to deviate and (S1 = 0, S2 = 1) is consistent.

• If µ1 = µ2, all agents mix uniformly: σi(1) = σi(2) = 0.5, resulting in (S1 = 0.5, S2 = 0.5).

By symmetry,

Πi1(0.5, µ1 | I1) = Πi2(0.5, µ2 | I1), ∀i.

Agents are indifferent and have no incentive to deviate and (S1 = 0.5, S2 = 0.5) is consistent.

Thus, Strategy 2 also constitutes a Perfect Bayesian Nash Equilibrium.

■

A.5 Proof of Proposition 4

We analyze the effect of increasing µ1 on equilibrium evasion Ã. By symmetry, the same logic applies

to increases in µ2 when µ1 is held constant.

According to Equation 15, the effect of increasing µ1 varies across three domains:

• Case 1: µ1 < µ2

In this region, all agents specialize in TH1, so S∗
1 = 1 and S∗

2 = 0. Since specialization remains

fixed as µ1 increases reducing evasion. This proves (i).

• Case 2: µ1 = µ2

Under Strategy 1, agents coordinate fully on TH1, resulting in:

ÃStrat 1 = Φ

 x̂∗1(1)− µ√
σ2
x + σ2

µ

 (A27)

Under Strategy 2, agents split evenly across the two havens:

ÃStrat 2 = 0.5 · Φ

 x̂∗1(0.5)− µ√
σ2
x + σ2

µ

+ 0.5 · Φ

 x̂∗2(0.5)− µ√
σ2
x + σ2

µ

 (A28)
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By symmetry, x̂∗1(0.5) = x̂∗2(0.5), implying:

ÃStrat 2 = Φ

 x̂∗1(0.5)− µ√
σ2
x + σ2

µ

 (A29)

Since x̂1(1) > x̂
(
10.5) (by Lemma 1), we conclude that ÃStrat 1 > ÃStrat 2, proving part (ii).

However, note that a marginal increase in µ1 beyond the symmetry point immediately triggers a

switch back to full specialization under Strategy 2. As a result, evasion jumps back to the level of

Strategy 1, reversing the previous decline. This discontinuous increase confirms part (iii).

• Case 3: µ1 > µ2

Once all agents are specialized in TH2, further increases in µ1 have no effect on specialization or

evasion, as no one responds to TH1’s signal anymore. This proves part (iv).

■

A.6 Proof of Proposition 8

The first part of the proof is straightforwards, by substituting the value of the public signals of the

extreme cases in Equation 8 and using Fδ(µ2 − µ1), we obtain the same expressions as in the Proof of

Proposition 4.

■

A.7 Proof of Proposition 9

If we evaluate Equation 15 at µ1 = µ2, which implies x̂1 = x̂2, θ̂1 = θ̂2, S1 = S2 = 0.5, Φ1 = Φ2 and

ϕ1 = ϕ2, the derivative becomes

0.5
ϕ(·)√
σ2
x + σ2

µ

(
∂x̂∗1
∂µ1

− 1

)
+ 0.5

ϕ(·)√
σ2
x + σ2

µ

(
∂x̂∗2
∂µ1

)
(A30)

The fist term is negative whereas the second one it is positive. µ1 decreases x̂1 through S1 = Fδ and

directly through Equation 7; whereas it increases x̂2 just through S2 = 1 − Fδ. Considering only the

effect on x̂1 through S1, the expression becomes the following one:

0.5
ϕ(·)√
σ2
x + σ2

µ

(
∂x̂∗1
∂S1

− 1

)
+ 0.5

ϕ(·)√
σ2
x + σ2

µ

(
∂x̂∗2
∂S2

)
(A31)

The symmetry of the problem induces that

∂x̂∗1
∂S1

= α · Φ(·)
1− S1ϕ(·)α−1

σx

= α · Φ(·)
1− S2ϕ(·)α−1

σx

=
∂x̂∗2
∂S2

(A32)
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and using the fact that ∂S2 = −∂S1 the remaining term in (43) makes the equation negative, even when

ignoring an effect that would reinforce this result. ■

VIII
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